Publications

Publications in peer-reviewed journals

(95) Selective Hydrodeoxygenation of Lignin-Derived Phenols to Aromatics Catalyzed by Nb2O5-Supported Iridium.Jeantelot, G.; Følkner, S. P.; Manegold, J. I. S.; Ingebrigtsen, M. G.; Jensen, V. R.; Le Roux, E. ACS Omega 2022, 7, 31561-31566. DOI: 10.1021/acsomega.2c04314.

(94) The Janus face of high trans-effect carbenes in olefin metathesis: gateway to both productivity and decompositionOcchipinti, G.; Nascimento, D. L.; Foscato, M.; Fogg, D. E.; Jensen, V. R. Chem. Sci. 2022, 13, 5107-5117. DOI: 10.1039/d2sc00855f.

(93) Toward E-selective Olefin Metathesis: Computational Design and Experimental Realization of Ruthenium Thio-Indolate Catalysts.Reim, I.; Occhipinti, G.; Törnroos, K. W.; Fogg, D. E.; Jensen, V. R. Top. Catal. 2021, 65, 448-461. DOI: 10.1007/s11244-021-01468-3.

(92) Bimolecular Coupling in Olefin Metathesis: Correlating Structure and Decomposition for Leading and Emerging Ruthenium-Carbene Catalysts.Nascimento, D. L.; Foscato, M.; Occhipinti, G.; Jensen, V. R.; Fogg, D. E. J. Am. Chem. Soc. 2021, 143, 11072-11079. DOI: 10.1021/jacs.1c04424.

(91) Challenging Metathesis Catalysts with Nucleophiles and Brønsted Base: The Stability of State-of-the-Art Catalysts to Attack by Amines.Nascimento, D. L.; Reim, I.; Foscato, M.; Jensen, V. R.; Fogg, D. E. ACS Catal. 2020, 10, 11623-11633. DOI: 10.1021/acscatal.0c02760.

(90) Unsaturated and Benzannulated N-Heterocyclic Carbene Complexes of Titanium and Hafnium: Impact on Catalysts Structure and Performance in Copolymerization of Cyclohexene Oxide with CO2.
Suresh, L.; Lalrempuia, R.; Ekeli, J. B.; Gillis-D'Hamers, F.; Törnroos, K. W.; Jensen, V. R.; Erwan Le Roux Molecules 2020, 25, 4364-4384. DOI: 10.3390/molecules25194364.

(89) Ethylene-Triggered Formation of Ruthenium Alkylidene from Decomposed Catalyst.
Smit, W.; Foscato, M.; Occhipinti, G.; Jensen, V. R. ACS Catal. 2020, 10, 6788-6797. DOI: 10.1021/acscatal.0c02206.

(88) Silica-supported Z-selective Ru olefin metathesis catalysts.
Renom-Carrasco, M.; Mania, P.; Sayah, R.; Veyre, L.; Occhipinti, O.; Jensen, V. R.; Thieuleux, C. J. Mol. Catal. 2020, 483, 110743. DOI: 10.1016/j.mcat.2019.110743.

(87) Z-Selective Monothiolate Ruthenium Indenylidene Olefin Metathesis Catalysts.
Smit, W.; Ekeli, J. B.; Occhipinti, G.; Woźniak, B.; Törnroos, K. W.; Jensen, V. R. Organometallics 2020, 39, 397-407. DOI: 10.1021/acs.organomet.9b00641.

(86) Automated in Silico Design of Homogeneous Catalysts.
Foscato, M.; Jensen, V. R. ACS Catal. 2020, 10, 2354-2377. DOI: 10.1021/acscatal.9b04952.

(85) Computational and theoretical approaches for mechanistic understanding: general discussion.
Bauer, M.; Cadge, J.; Davies, D.; Durand, D. J.; Eisenstein, O.; Ess, D.; Fey, N.; Gallarati, S.; George, M.; Hamilton, A.; Harvey, J.; Hintermair, U.; Hulme, A. N.; Ishii, Y.; Jensen, V. R.; Lloyd-Jones, G.; Love, J.; Lynam, J.; Macgregor, S.; Marder, T. B.; Meijer, E. J.; Morgan, P.; Morris, R. H.; Mwansa, J.; Odom, A.; Perutz, R.; Reiher, M.; Schafer, L.; Slattery, J.; Young, T. Faraday Discuss. 2019, 220,
464-488. DOI: 10.1039/c9fd90073j.

(84) Mechanistic insight into organic and industrial transformations: general discussion.
Aoki, Y.; Bauer, M.; Braun, T.; Cadge, J.; Davies, D.; Durand, D. J.; Eisenstein, O.; Ess, D.; Fairlamb, I.; Fey, N.; Gallarati, S.; George, M.; Greaves, M.; Halse, M.; Hamilton, A.; Harvey, J.; Haynes, A.; Hintermair, U.; Hulme, A. N.; Ishii, Y.; Jakoobi, M.; Jensen, V. R.; Kennepohl, P.; Kuwata, S.; Lei, A.; Lloyd-Jones, G.; Love, J.; Lovelock, K.; Lynam, J.; Macgregor, S.; Marder, T. B.; Meijer, E. J.; Morgan, P.; Morris, R. H.; Mwansa, J.; Nelson, D.; Odom, A.; Perutz, R.; Reiher, M.; Renny, J.; Roithova, J.; Schafer, L.; Schilter, D.; Scott, S.; Slattery, J.; Walton, J.; Wilden, J. D.; Wong, C.-Y.; Yaman, T.; Young, T. Faraday Discuss. 2019, 220,
282-316. DOI: 10.1039/c9fd90072a.

(83) Physical methods for mechanistic understanding: general discussion.
Aoki, Y.; Bauer, M.; Braun, T.; Cadge, J.; Davies, D.; Durand, D. J.; Eisenstein, O.; Ess, D.; Fairlamb, I.; Fey, N.; Gallarati, S.; George, M.; Greaves, M.; Halse, M.; Hamilton, A.; Harvey, J.; Haynes, A.; Hintermair, U.; Hulme, A. N.; Ishii, Y.; Jakoobi, M.; Jensen, V. R.; Kennepohl, P.; Kuwata, S.; Lei, A.; Lloyd-Jones, G.; Love, J.; Lovelock, K.; Lynam, J.; Macgregor, S.; Marder, T. B.; Meijer, E. J.; Morgan, P.; Morris, R. H.; Mwansa, J.; Nelson, D.; Odom, A.; Perutz, R.; Reiher, M.; Renny, J.; Roithova, J.; Schafer, L.; Schilter, D.; Scott, S.; Slattery, J.; Walton, J.; Wilden, J. D.; Wong, C.-Y.; Yaman, T.; Young, T. Faraday Discuss. 2019, 220,
144-178. DOI: 10.1039/c9fd90070e.

(82) Benefit of a Hemilabile Ligand in Deoxygenation of Fatty Acids to 1-Alkenes.
Eliasson, S. H. H. and Jensen, V. R. Faraday Discuss. 2019, 220,
231-248. DOI: 10.1039/C9FD00037B.

(81) DENOPTIM: Software for Computational de Novo Design of Organic and Inorganic Molecules.
Foscato, M.; Venkatraman, V.; Jensen, V. R. J. Chem. Inf. Model. 2019, 59, 4077-4082. DOI: 10.1021/acs.jcim.9b00516.

(80) Supported Ru Olefin Metathesis Catalysts via a Thiolate Tether.
Renom-Carrasco, M.; Mania, P.; Sayah, R.; Veyre, L.; Occhipinti, O.; Jensen, V. R.; Thieuleux, C. Dalton Trans. 2019, 48, , 2886-2890. DOI: 10.1039/c8dt04592e.

(79) Green Solvent for the Synthesis of Linear α-Olefins from Fatty Acids.
Eliasson, S. H. H.; Chatterjee, A.; Occhipinti, G.; Jensen, V. R. ACS Sustain. Chem. Eng. 2019, 7,
4903--4911. DOI: 10.1021/acssuschemeng.8b05523.

(78) Rapid Decomposition of Olefin Metathesis Catalysts by a Truncated N-Heterocyclic Carbene (NHC): Efficient Catalyst Quenching and NHC Vinylation.
Rufh, S. A.; Goudreault, A. Y.; Foscato, M.; Jensen, V. R.; Fogg, D. E. ACS Catal. 2018, 8, 11822-11826. DOI: 10.1021/acscatal.8b03123.

(77) Bimolecular Coupling as a Vector for Decomposition of Fast-Initiating Olefin Metathesis Catalysts.
Bailey, G. A.; Higman, C. S.; Day, C. S.; Foscato, M.; Occhipinti, G.; Jensen, V. R., Fogg, D. E. J. Am. Chem. Soc. 2018, 140, 6931-6944. DOI: 10.1021/jacs.8b02709.

(76) Selective production of linear α-olefins via catalytic deoxygenation of fatty acids and derivatives.
Chatterjee, A.; Eliasson, S. H. H.;
Jensen, V. R. Catal. Sci. Technol., 2018, 8, 1487-1499. DOI: 10.1039/C7CY02580G.

(75) Spin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Prediction.
Bernhardt, P. V.; Bilyj, J. K.; Brosius, V.; Chernyshov, D.; Deeth, R. J.; Foscato, M.; Jensen, V. R.; Mertes, N.; Riley, M. J. and Törnroos, K. W. Chem. Eur. J. 2018, 24, 5082-5085. DOI: 10.1002/chem.201705439.

(74) The Mechanism of Rh-catalyzed Transformation of Fatty Acids to Linear Alpha-Olefins.
Eliasson, S. H. H.; Chatterjee, A.;
Occhipinti, G.; Jensen, V. R. Inorganics 2017, 5, 87; DOI: 10.3390/inorganics5040087.

(73) Decomposition of Olefin Metathesis Catalysts by Bronsted Base: Metallacyclobutane Deprotonation as a Primary Deactivating Event.
Bailey, G. A.; Lummiss, J. A.; Foscato, M.; Occhipinti, G.; McDonald, R; Jensen, V. R., Fogg, D. E. J. Am. Chem. Soc. 2017, 139, 6446-16449. DOI: 10.1021/jacs.7b08578.

(72) Loss and Reformation of Ruthenium Alkylidene: Connecting Olefin Metathesis, Catalyst Deactivation, Regeneration, and Isomerization.
Engel, J.; Smit, W.; Foscato, M.; Occhipinti, G.; Törnroos, K. W.; Jensen, V. R. J. Am. Chem. Soc. 2017, 139, 16609-16619; DOI: 10.1021/jacs.7b07694.

(71) Pyridine-Stabilized Fast-Initiating Ruthenium Monothiolate Catalysts for Z-Selective Olefin Metathesis.
Occhipinti, G.; Törnroos, K. W.; Jensen, V. R. Organometallics 2017, 36, 3284-3292; DOI: 10.1021/acs.organomet.7b00441.

(70) A Heterogeneous Catalyst for the Transformation of Fatty Acids to αOlefins.
Chatterjee, A.; Jensen, V. R., ACS Catalysis 2017, 7, 7784-7789. DOI: 10.1021/acscatal.6b03460.

(69) Palladium Precatalysts for Decarbonylative Dehydration of Fatty Acids to Linear Alpha Olefins.
Chatterjee, A.; Eliasson, S. H. H.; Törnroos, K. W.; Jensen, V. R., ACS Catalysis 2016, 6, 7784-7789.
DOI: 10.1021/acscatal.6b02460.

(68) Sterically (un)encumbered mer-tridentate N-heterocyclic carbene complexes of titanium(IV) for the copolymerization of cyclohexene oxide with CO2.
Hessevik, J.; Lalrempuia, R.; Nsiri, H.; Törnroos, K. W.; Jensen, V. R.; Le Roux, E Dalton Trans. 2016, 45, 14734-14744. DOI: 10.1039/C6DT01706A.

(67) Phosphine-Based ZSelective Ruthenium Olefin Metathesis Catalysts.
Smit, W.; Koudriavtsev, V; Occhipinti, G.; Törnroos, K. W.; Jensen, V. R. Organometallics 2016, 35, 1825-1837; DOI: 10.1021/acs.organomet.6b00214.

(66) Computer-aided molecular design of imidazole-based absorbents for CO2 capture
Venkatraman, V.; Gupta, M.; Foscato, M.; Svendsen, H. F.; Jensen, V. R.; Alsberg, B. K. Int. J. Greenh. Gas Control 2016, 49, 55-63.

(65) Ring Closure to Form Metal Chelates in 3D Fragment-Based de Novo Design.
Foscato, M.; Houghton, B. J.; Occhipinti, G.; Deeth, R. J.; Jensen, V. R. J. Chem. Inf. Model. 2015, 55, 1844-1856.
DOI: 10.1021/acs.jcim.5b00424.

(64) Integration of Ligand Field Molecular Mechanics in Tinker.
Foscato, M.; Deeth, R. J.; Jensen, V. R. J. Chem. Inf. Model. 2015, 55, 12826-1290.

(63) Evolutionary de novo design of phenothiazine derivatives for dye-sensitized solar cells.
Venkatraman, V.; Foscato, M.; Jensen, V. R.; Alsberg, B. K. J. Mater. Chem. A. 2015, 3, 9851.

(62) Automated Building of Organometallic Complexes from 3D Fragments.
Foscato, M.; Venkatraman, V.; Occhipinti, G.; Alsberg, B.; Jensen, V. R. J. Chem. Inf. Model. 2014, 54, 1919-1931.

(61) Theory-Assisted Development of a Robust and Z-Selective Olefin Metathesis Catalyst.
Occhipinti,G.; Koudriavtsev, V; Törnroos, K. W.; Jensen, V. R. Dalton Trans. 2014, 43, 11106-11117.

(60) Neutral Nickel Ethylene Oligo- and Polymerization Catalysts: Towards Computational Catalyst Prediction and Design.
Heyndrickx, W.; Occhipinti, G.; Jensen, V. R. Chem. Eur. J. 2014, 20, 7962-7978.

(59) Automated design of realistic organometallic molecules from fragments.
Foscato, M.; Occhipinti, G.; Venkatraman, V.; Alsberg, B.; Jensen, V. R. J. Chem. Inf. Model. 2014, 54, 767-780.

(58) Accurate Metal-Ligand Bond Energies in the η²-C2H4 and η²-C60 Complexes of Pt(PH3)2, with application to their bis(triphenylphosphine) analogues.
Sparta, M.; Jensen, V. R.; Børve, K. J. Mol. Phys. 2013, 111, 1599-1611.

(57) The Complete Reaction Pathway of Ruthenium-Catalyzed Olefin Metathesis of Ethyl Vinyl Ether: Kinetics and Mechanistic Insight from DFT.
Minenkov, Y.; Occhipinti, G.; Jensen, V. R. Organometallics 2013, 32, 2099-2111.

(56) Simple and Highly Z-Selective Ruthenium-Based Olefin Metathesis Catalyst.
Occhipinti, G.; Hansen, F. R.; Törnroos, K. W.; Jensen, V. R. J. Am. Chem. Soc. 2013, 135, 3331-3334.

(55) Striking a Compromise: Polar Functional Group Tolerance versus Insertion Barrier Height for Olefin Polymerization Catalysts.
Heyndrickx, W.; Occhipinti, G.; Bultinck, P; Jensen, V. R. Organometallics 2012, 31, 6022-6031.

(54) An Evolutionary Algorithm for de Novo Optimization of Functional Transition Metal Compounds.
Chu, Y.; Heyndrickx, W.; Occhipinti, G.; Jensen, V. R.; Alsberg, B. K. J. Am. Chem. Soc. 2012, 134, 8885-8895.

(53) The accuracy of DFT-optimized geometries of functional transition metal compounds: a validation study of catalysts for olefin metathesis and other reactions in the homogeneous phase.
Minenkov, Y.; Singstad, Å; Occhipinti, G.; Jensen, V. R. Dalton Trans. 2012, 41, 5526-5541.

(52) The Nature of the Barrier to Phosphane Dissociation from Grubbs Olefin Metathesis Catalysts.
Minenkov, Y.; Occhipinti, G.; Heyndrickx, W.; Jensen, V. R. Eur. J. Inorg. Chem. 2012,17, 1507-1516.

(51) Neutral Nickel Oligo- and Polymerization Catalysts: The Importance of Alkyl Phosphine Intermediates in Chain Termination.
Heyndrickx, W.; Occhipinti, G.; Minenkov, Y; Jensen, V. R. Chem. Eur. J. 2011,17, 14628-14642.

(50) Nature of the Transition Metal-Carbene Bond in Grubbs Olefin Metathesis Catalysts.
Occhipinti, G.; Jensen, V. R. Organometallics 2011,30, 3522-3529.

(49) Synthesis and Stability of Homoleptic Metal(III) Tetramethylaluminates.
Occhipinti, G.; Meerman, C.; Dietrich, H. M.; Litlabø, R.; Auras, F.; Törnroos, K. W.; Maichle-Mössmer, C.; Jensen, V. R.; Anwander, R. J. Am. Chem. Soc. 2011,133, 6323-6337.

(48) Substrate Hydroxylation by the Iron-Oxo Intermediate in Aromatic Amino Acid Hydroxylases: A DFT Mechanistic Study.
Olsson, E.; Martinez, A.; Teigen, K.; Jensen, V. R. Eur. J. Inorg. Chem. 2011, 2720-2732.

(47) Influence of multidentate N-donor ligands on highly electrophilic zinc initiator for the ring-opening polymerization of epoxides.
Merle, N.; Törnroos, K. W.; Jensen, V. R.; Le Roux, E. J. Organomet. Chem. 2011, 696, 1691-1697.

(46) Formation of the Iron-Oxo Hydroxylating Species in the Catalytic Cycle of Aromatic Amino Acid Hydroxylases.
Olsson, E.; Martinez, A.; Teigen, K.; Jensen, V. R. Chem. Eur. J. 2011, 17, 3746-3758.

(45) The Aromatic Amino Acid Hydroxylase Mechanism: A Perspective from Computational Chemistry.
Olsson, E.; Teigen, K.; Martinez, A.; Jensen, V. R. In Advances in Inorganic Chemistry: Theoretical and Computational Inorganic Chemistry, Vol 62, 2010; Vol. 62, pp 437-500.

(44) On the nature of the active site in ruthenium olefin coordination-insertion polymerization catalysts.
Heyndrickx, W.; Occhipinti, G.; Minenkov, Y.; Jensen, V. R. J. Mol. Catal. A-Chem. 2010, 324, 64-74.

(43) Water Dissociation and Dioxygen Binding in Phenylalanine Hydroxylase.
Olsson, E.; Martinez, A.; Teigen, K.; Jensen, V. R. Eur. J. Inorg. Chem. 2010, 351-356.

(42) Metal-Phosphine Bond Strengths of the Transition Metals: A Challenge for DFT.
Minenkov, Y.; Occhipinti, G.; Jensen, V. R. J. Phys. Chem. A 2009, 113, 11833-11844.

(41) Synthesis of a new bidentate NHC-Ag(I) complex and its unanticipated reaction with the Hoveyda-Grubbs first generation catalyst.
Occhipinti, G.; Jensen, V. R.; Törnroos, K. W.; Frøystein, N. A.; Bjørsvik, H. R. Tetrahedron 2009, 65, 7186-7194.

(40) Ruthenium Alkylidene Complexes of Chelating Amine Ligands.
Occhipinti, G.; Bjørsvik, H. R.; Törnroos, K. W.; Jensen, V. R. Organometallics 2007, 26, 5803-5814.

(39) The first imidazolium-substituted metal alkylidene.
Occhipinti, G.; Bjørsvik, H. R.; Törnroos, K. W.; Fürstner, A.; Jensen, V. R. Organometallics 2007, 26, 4383-4385.

(38) Activity of Rhodium-Catalyzed Hydroformylation: Added Insight and Predictions from Theory.
Sparta, M.; Børve, K. J.; Jensen, V. R. J. Am. Chem. Soc. 2007, 129, 8487-8499.

(37) Green and Efficient Synthesis of Bidentate Schiff Base Ru-Catalysts for Olefin Metathesis.
Occhipinti, G.; Jensen, V. R.; Bjørsvik, H. R. J. Org. Chem. 2007, 73, 3561-3564.

(36) Structure and Stability of Networked Metallofullerenes of the Transition Metals.
Sparta, M.; Børve, K. J.; Jensen, V. R. J. Phys. Chem. A 2006, 110, 11711-11716.

(35) Site Epimerization in ansa-Zirconocene Polymerization Catalysts.
Graf, M.; Angermund, K.; Fink, G.; Thiel, W.; Jensen, V. R. J. Organomet. Chem. 2006, 691, 4367-4378.

(34) Multiple additions of palladium to C60.
Loboda, O.; Jensen, V. R.; Børve, K. J. Fullerenes Nanotubes and Carbon Nanostructures 2006, 14, 365-371.

(33) Structure and stability of substitutional metallofullerenes of the first-row transition metals.
Sparta, M.; Jensen, V. R.; Børve, K. J. Fullerenes Nanotubes and Carbon Nanostructures 2006, 14, 269-278.

(32) Quantitative Structure—Activity Relationships of Ruthenium Catalysts for Olefin Metathesis.
Occhipinti, G.; Bjørsvik, H. R.; Jensen, V. R. J. Am. Chem. Soc. 2006, 128, 6952-6964.

(31) Catalytic Dehydrogenation of Ethane over Mononuclear Cr(III)/Silica Surface Sites. Part II. C-H Activation by Oxidative Addition.
Lillehaug, S.; Jensen, V. R.; Børve, K. J. J. Phys. Org. Chem. 2006, 19, 25-33.

(30) DFT Investigation of the Single-Center, Two-State Model for the Broken Rate Order of Transition Metal Catalyzed Olefin Polymerization.
Jensen, V. R.; Koley, D.; Jagadeesh, M. N.; Thiel, W. Macromolecules 2005, 38, 10266-10278.

(29) Synthesis of methoxy-substituted phenols by peracid oxidation of the aromatic ring.
Bjørsvik, H. R.; Occhipinti, G.; Gambarotti, C.; Cerasino, L.; Jensen, V. R. J. Org. Chem. 2005, 70, 7290-7296.

(28) Unusual temperature effects in propene polymerization using stereorigid zirconocene catalysts.
Jensen, V. R.; Graf, M.; Thiel, W. Chemphyschem 2005, 6, 1929-1933.

(27) The reaction mechanism of phenylalanine hydroxylase. A question of coordination.
Teigen, K.; Jensen, V. R.; Martinez, A. Pteridines 2005, 16, 27-34.

(26) A novel efficient deoxygenation process for N-heteroarene N-oxides.
Bjørsvik, H. R.; Gambarotti, C.; Jensen, V. R.; Gonzalez, R. R. J. Org.
Chem. 2005, 70, 3218-3224.

(25) Ethene copolymerization with trialkylsilyl protected polar norbornene derivates.
Wendt, R. A.; Angermund, K.; Jensen, V.; Thiel, W.; Fink, G. Macromol. Chem. Phys. 2004, 205, 308-318.

(24) Theoretical investigation of the low-energy states of CpMoCl(PMe3)2 and their role in the spin-forbidden addition of N2 and CO.
Jensen, V. R.; Poli, R. J. Phys. Chem. A 2003, 107, 1424-1432.

(23) Reduction of chromium in ethylene polymerisation using bis(imido)chromium(VI) catalyst precursors.
Jensen, V. R.; Børve, K. J. Chem. Commun. 2002, 542-543.

(22) Steric Control of the Chromium-Catalyzed Oligomerization of Ethylene.
Döhring, A.; Jensen, V. R.; Jolly, P. W.; Thiel, W.; Weber, J. C. Macromol. Symp. 2001, 173, 117-121.

(21) Computational Investigation of Ethylene Insertion into the Metal-Methyl bond of First-Row Transition Metal(III) Species.
Jensen, V. R.; Thiel, W. Organometallics 2001, 20, 4852-4862.

(20) Donor-ligand-substituted cyclopentadienylchromium(III) complexes: A new class of alkene polymerization catalyst. 2. Phosphinoalkyl-substituted systems.
Döhring, A.; Jensen, V. R.; Jolly, P. W.; Thiel, W.; Weber, J. C. Organometallics 2001, 20, 2234-2245.

(19) Theoretical Investigation of Bis(imido)chromium(VI) Cations as Polymerization Catalysts.
Jensen, V. R.; Børve, K. J. Organometallics 2001, 20, 616-626.

(18) Toward quantitative prediction of stereospecificity of metallocene-based catalysts for alpha-olefin polymerization.
Angermund, K.; Fink, G.; Jensen, V. R.; Kleinschmidt, R. Chem. Rev. 2000, 100, 1457-1470.

(17) Activity of homogeneous chromium(III)-based alkene polymerization catalysts: Lack of importance of the barrier to ethylene insertion.
Jensen, V. R.; Angermund, K.; Jolly, P. W.; Børve, K. J. Organometallics 2000, 19, 403-410.

(16) The role of intermediate chain migration in propene polymerization using substituted {iPr(CpFlu)}ZrCl2/MAO catalysts.
Angermund, K.; Fink, G.; Jensen, V. R.; Kleinschmidt, R. Macromol. Rapid Commun. 2000, 21, 91-97.

(15) Soft Bending Modes of Terminal Chlorides in Gaseous Two- and Three-Coordinate Cu(II)-Cl Species.
Ystenes, B. K.; Jensen, V. R. Inorg. Chem. 1999, 38, 3985-3993.

(14) Structure and thermodynamics of gaseous oxides, hydroxides, and mixed oxohydroxides of chromium: CrOm(OH)n (m, n = 0-2) and CrO3. A computational study.
Espelid, Ø.; Børve, K. J.; Jensen, V. R. J. Phys. Chem. A 1998, 102, 10414-10423.

(13) An investigation of the quantum chemical description of the ethylenic double bond in reactions: II. Insertion of ethylene into a titanium-carbon bond.
Jensen, V. R.; Børve, K. J. J. Comput. Chem. 1998, 19, 947-960.

(12) Evaluation of PM3(tm) as a geometry generator in theoretical studies of transition-metal-based catalysts for polymerizing olefins.
Børve, K. J.; Jensen, V. R.; Karlsen, T.; Støvneng, J. A.; Swang, O. Journal of Molecular Modeling 1997, 3, 193-202.

(11) Quantum chemical investigation of ethylene insertion into the Cr-CH3 bond in CrCl(H2O)CH3+ as a model of homogeneous ethylene polymerization.
Jensen, V. R.; Børve, K. J. Organometallics 1997, 16, 2514-2522.

(10) Chromium dichloride: The unusually flat bending potential of the 5Pg-derived 5B2 ground state.
Jensen, V. R. Mol. Phys. 1997, 91, 131-137.

(9) An investigation of the quantum chemical description of the ethylenic double bond in reactions. I. The electrophilic addition of hydrochloric acid to ethylene.
Børve, K. J.; Jensen, V. R. J. Chem. Phys. 1996, 105, 6910-6920.

(8) Use of multivariate methods in the analysis of calculated reaction pathways.
Alsberg, B. K.; Jensen, V. R.; Børve, K. J. J. Comput. Chem. 1996, 17, 1197-1216.

(7) Raman-Spectroscopic and Ab-Initio Quantum-Chemical Investigations of Molecules and Complex-Ions in the Molten System CsCl-NbCl5-NbOCl3.
Rosenkilde, C.; Voyiatzis, G.; Jensen, V. R.; Ystenes, M.; Østvold, T. Inorg. Chem. 1995, 34, 4360-4369.

(6) Titanium-Ethylene Complexes Proposed to Be Intermediates in Ziegler-Natta Catalysis - Can They Be Detected through Vibrational Spectroscopy?
Jensen, V. R.; Børve, K. J.; Westberg, N.; Ystenes, M. Organometallics 1995, 14, 4349-4358.

(5) Ziegler-Natta Ethylene Insertion Reaction for a 5-Coordinate Titanium Chloride Complex Bridged to an Aluminum-Hydride Cocatalyst.
Jensen, V. R.; Børve, K. J.; Ystenes, M. J. Am. Chem. Soc. 1995, 117, 4109-4117.

(4) Vibrational Frequencies of A1F3 - an Ab-Initio Mo Study Evaluating Different Methods on a Tricky Case.
Scholz, G.; Schöffel, K.; Jensen, V. R.; Bache, O.; Ystenes, M. Chem. Phys. Lett. 1994, 230, 196-202.

(3) Vibrational-Spectra and Ab-Initio Quantum-Mechanical Calculation of Energy, Geometry and Vibrational Frequencies of the Oxothiophosphate Ions PO3S3-, PO2S23- and POS33-.
Brockner, W.; Jendrzok, B.; Menzel, F.; Jensen, V. R.; Ystenes, M. J. Mol. Struct. 1994, 319, 85-100.

(2) Strength of the Metal-Olefin Bond in Titanium Complexes Related to Ziegler-Natta Catalysis - a Theoretical-Model Study of a Square-Pyramidal Active-Center Postulated to Be Found in Titanium Halide Based Catalysts.
Jensen, V. R.; Ystenes, M.; Wärnmark, K.; Åkermark, B.; Svensson, M.; Siegbahn, P. E. M.; Blomberg, M. R. A. Organometallics 1994, 13, 282-288.

(1) The Ziegler-Natta Olefin Insertion Reaction for Cationic Metals.
Jensen, V. R.; Siegbahn, P. E. M. Chem. Phys. Lett. 1993, 212, 353-361.

Patents and patent applications

(3) Improved Olefin Metathesis Catalysts.
Jensen, V. R.; Occhipinti, G. Eur. Patent Appl. EP 15176276, 2015.

(2) Ruthenium and Osmium Heterocyclic Carbene Metathesis Catalysts.
Jensen, V. R.; Occhipinti, G. Eur. Patent Appl. EP 2826783 A1, 2013.

(1) Novel Olefin Metathesis Catalysts.
Jensen, V. R.; Occhipinti, G.; Hansen, F. R. Int. Patent Appl. WO 2012/032131, 2012.

Printed conference contributions

(4) Metallocene/MAO Catalyzed Polymerizations of Functionalized Norbornene Derivatives: Copolymerizations Using Ethene, and Terpolymerizations Using Ethene and Norbornene.
Fink, G.; Wendt, R. A.; Angermund, K.; Jensen, V. R.; Thiel, W. Polymeric Materials: Science and Engineering 2001, 84, 255-256.

(3) Phosphinoalkyl-Substituted Cyclopentadienyl Chromium Catalysts for the Oligomerization of Ethylene.
Döhring, A.; Jensen, V. R.; Jolly, P. W.; Thiel, W.; Weber, J. C. In Organometallic Catalysts and Olefin Polymerization; Blom, R., Follestad, A., Rytter, E., Tilset, M., Ystenes, M., Eds.; Springer-Verlag: Oslo, Norway, 2000, pp 127-136.

(2) New Experimental and Theoretical Results and Their Relevance to the Structure of the Active Centre in MgCl2 Supported Ziegler- Natta Catalysts.
Ystenes, M.; Bache, Ø.; Jensen, V. R.; Wester, T. S. In Proc. of the International Harald A. Øye Symposium; Sørlie, M., Østvold, T., Huglen, R., Eds.; The Norwegian Institute of Technology: Trondheim, Norway, 1995, p 435.

(1) Benchmarking GAMESS on the Intel Paragon XP/S.
Børve, K. J.; Herland, B. G.; Jensen, V. R.; Sørevik, T. In Proceedings of Intel Supercomputing User Group Meeting; MacKeeman, A., Ed.: Manchester, 1994.

Book chapters

(1) Polyolefins: Design of Stereoselective Metallocene Catalysts.
Angermund, K.; Fink, G.; Jensen, V. R.; Kleinschmidt, R. In Encyclopedia of Materials: Science and Technology; Buschow, K. J. H., Cahn, R. W., Flemings, M. C., Ilschner, B., Kramer, E. J., Mahajan, S., Eds.; Elsevier: Oxford, 2001.

Popular scientific

(3) Modeling of Chemical Reactions and Catalysis.
Jensen, V. R. Meta, 2011, No. 3, 19-21.

(2) QUASI katalytisch.
Jensen, V. R.; Bühl, M. Nachrichten aus der Chemie 2001, 49, 25-27.

(1) Molekylmodellering av reaksjoner katalysert av metallkomplekser.
Børve, K. J.; Espelid, Ø.; Jensen, V. R.; Støvneng, J. A.; Swang, O. Kjemi 1998, 10, 22.